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ABSTRACT

We consider the Cauchy problem ut = Au + f(x,u), x e Rn, t > 0, and

prove that if there exist a strict supersolution w and a strict subsolution

w with w > w then there exists at least one stable equilibrium solution -

between w and w provided that f satisfies certain conditions. The

stability is with respect to the L norm. Unlike the case where the spatial

domain is bounded, some difficulties occur near lxi = in the present

problem. The major part of this paper is devoted to dealing with such

difficulties.

AMS (MOS) Subject Classifications: 35K55, 35B35, 35J60

Key Words: Nonlinear parabolic equation, stable solution, super and
subsolution, comparison principle - ."

Work Unit Number I (Applied Analysis)
.1' %. % '

,.p.. - - U.. .-.-

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. .,

. -.

-. ,-.. .. •-

.. -U . ' -.. d. . .- - , . .-. * - . *.. -- , - , -. . -. . . . . - .. . . , . . . . - - . . -, % %C ,% '



SIGNIFICANCE AND EXPLANATION

" ...The equations we study here arise in many fields of mathematical sciences

such as population dynamics in mathematical ecology, population genetics,

chemical reaction theory, etc. Our study concerns the stability of

equilibrium solutions of these equations.

Among the solutions of nonlinear evolution equations, the practically

important ones are those which are stable in a certain sense. However,

finding a stable equilibrium solution is in many cases considerably more

difficult than just proving the existence of equilibrium solutions. In this

paper we give,,a useful sufficient condition for the existence of stable

-- equilibrium solutions.

The result we present tn this paper is a generalization of the author's

- former results on equations in bounded domains. However, the equations we

consideriIhere (which are in the whole space R5) exhibit much more complicated

dynamical behavior, and therefore only a few results have been known about the

existence of stable equilibrium solutions. The objective of this paper is to

-P .make a systematic study of these equations and to give rather a general

theorem on the existence of stable equilibrium solutions. Accession For"'" NTIS CRA&I
. DTIC TAB
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L STABILITY OF AN FXPONENTIALLY DECREASING SOLUTION OF

THE PROBLEM Au + f(x,u) - 0 IN le

Hiroshi Matano

~1. Introduction

In the earlier paper (5] the author has studied the dynamical structure of rather a

~wide class of equations in which a certain stronger version of comparison principle

~holds. Such equations, characterized as strongly order-preserving local semiflows,

~include single eemilinear parabolic equations in bounded domains, weakly coupled reaction

i diffusion systems of competition type with two unknowns, those of cooperation type with

any number of unknowns, etc. An interesting feature of strongly order-preserving local

semiflows having a certain compactness property is that any unstable equilibrium point has

non-empty unstable manifold. This property, which is not trivial since linearized

'-"-instability is not assumed, has far greater implications than it apparently seems (see (51

. . .for details). Hirsch [3] has made an independent study of basically the same class of

local semi~flows and has obtained other interesting results. Among other things, he has

.- proved that almost all the bounded orbits are quasi-convergent; in other words, their

i w-limit sets are contained in the set of equilibria. As a consequence, any eriodic

orbit is unstable.

Another interesting property of such local semiflowe is that if ; is a time-

independent strict supersolution (the definition of which will be given in the next

section) and if w is a time-independent strict eubsolution with ; > w then there

exists at least one stable equilibrium point (i.e. equilibrium solution) between ; and

, w ([5j Theorem 3] ). This theorem is a generalization of the author's former result [4;

., Theorem 4.21 on single eemilinear diffusion equations in bounded domains, and is

S.
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exceedingly useful in finding stable equilibrium solutions. One of its applications to

reaction-diffusion syste.,ts of competition type is found in Matano and Mimura [6].

What all the above results show is the usefulness of the strong comparison principle,

which until recently has not been appreciated in the context of evolution equations.

.1 While the standard comparison principle is not by itself powerful enough to have profound

implications on the dynamical behavior of solutions, its slightly stronger version, on the

other hand, can play a significantly powerful role in the qualitative analysis of a

certain class of equations.

With all these developments in the theory of strongly order-preserving systems, there

are nonetheless some practically important equations that are order-preserving (which

means that the comparison theorem holds) but not strongly order-preserving in the sense of

[3] or [5]. These include initial value problems of the form{ = Au + f(x,u), x e 09 , t > 0at
u(x,O) = u0(x), x e

%:2 2 2 2
where A = 3 /3x1 + .. + 3 /ax2, and porus media type equations of the form

(2) 1 Ru A(u M ) + f(x,u)

where m > I. The unboundedness of IF in (1) or the degeneracy of diffusion near u = 0

in (2) prevent these equations from being strongly order-preserving (although they are

both order-preserving), hence the general theory of [3] or [5] does not apply. In orderAs.
to study these equations we need careful analysis near lxi - - or near the free

boundary. The aim of the present paper is to show that some of the results obtained for

the strongly order-preserving systems still hold true for the problem (1) under certain

circumstances. The problem (2) will be studied in the forthcoming paper [2].

Let us consider the initial value problem (1), where the initial data u0  is a

bounded continuous function defined on le. We assume f(x,O) E 0, so that u = 0 is an

equilibrium solution of (1). We may call u = 0 the trivial equilibrium solution.

Various kinds of sufficient conditions are known for the existence of non-trivial

-2-
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equilibrium solutions. In many cases, however, the harder part of the analysis is to

study the stability of those equilibrium solutions.

In an attempt to extend the above-mentioned result (41 Theorem 4.2] (bounded domain

case) to the present equation (1), Crandall, Fife and Peletier (11 proved the following:

If f satisfies (A.1)-(A.3) (see next section) and if w and w are time-independent

strict super- and sub-solutions respectively with ; > w and ;(-) = w(-) = 0, there

exists at least one stable equilibrium solution between ; and w.

If, in particular, one can find ;(x) and w(x) such that ; > w > 0, then their

result guarantees the existence of a positive stable equilibrium solution that decays as

lxi + -. However, the stability they discussed was rather a weak one, namely the

stability with respect to perturbations decaying rather rapidly as lxi + -. The question

therefore still remained open as to whether the equilibrium solution they obtained is L

- stable or notl in other words, whether or not it is stable under any bounded small

- perturbation that does not necessarily decay as ,xi + W.

The major contribution of the present paper is to give an affirmative answer to the

above question. The key point of the discussion is the idea of "strong stability" (see

Definition 5), which was first introduced in [5]. Since our problem (1) falls outside the

category of strongly order-preserving systems, we need some extra careful analysis near

-' . lxi - *

Notation and the main theorem will be given in Section 2. The proof of the theorem

will be carried out in Section 3. Finally, in the Appendix, we give a counterexample that

shows the assumptions (A.1)-(A.3) in the Theorem or Proposition 2o3 cannot be dropped,

this illustrates the difference between the present problem (1) and an initial-boundary

value problem in a bounded domain (the latter being strongly order-preserving).

The author expresses his gratitude to Professor Paul C. Fife for many stimulating

44# discussions.
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2. Notation and Main Theorem

We assume the following:

* (A.1) f : Rn x R + R is a C2 map, and for any K > 0 the derivatives f, fxO

fu' fxu' fuu are bounded in the region x e Re, lul £ K.

(A.2) f(x,0) = 0 for all x e Rn.

(A.3) There exist positive numbers a, M, 6 such that

Sfu(x,u) I -a

for all lxl a lul

By a solution of (1) we mean a classical solution with bounded continuous initial

data; in other words, we are considering solutions that are bounded (in x e Rn) for each

t a 0. Let {U(t)) be the semigroup generated by (1)i namely, for each t a 0, the
t> 0

operator U(t) is defined by the correspondence

(3) UMt : -*u(.,tW)

where u(x,t;$) is the solution of (1) with initial data u0 -

Definition 1. A function v e C2 (Rn ) r L(Re) is called an equilibrium solution of

(I) if it satisfies

(4) AV + f(x,v) - 0 in Rn.

Definition 2. A bounded continuous function w = w(x,t) is called a (time-

dependent) supersolution if

U(t)w(.,t') < w(,t + t')

for any t 1 0, t' a 0, where U(t) is as in (3) and the relation * < $ denotes the

pointwise order relation *(x) < *(x) in Rn. w is called a (time-dependent)

subsolution if the reversed inequality holds for any t 1 0, t' a 0.

Definition 3. A supersolution is called a time-independent supersolution if it is

independent of the variable t; in other words, a bounded continuous function w = w(x)

is called a time-independent supersolution if

U(t)w I w

for any t 0 0, where U(t) is as in (3). If, in addition, w is not an equilibrium

-4-
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.1

solution, then it is called a time-independent strict supersolution. A time-independent

(strict) subsolution is defined likewise.

Rmr21w___ is a time-dependent supersolution only

N wt I Aw + f(x,w), x e r", t > 0

in a certain generalized sense. Similarly, w - w(x) is a time-independent supersolution

if and only if

,w + f(x,w) 1 0, x e

in a generalized sense (see Sattinger (8]).

Definition 4. An equilibrium solution v of (i) is said to be L -stable from above

(reap. from below) if for any C > 0 there exists a 8 > 0 such that for any

w ccn) n L(3) with 1. - vi < 8 and wI v (reap. w v) we have

IU(t)w - v < C

for all t a 0, where 1ol denotes the L7 norm; namely

.IPn - sup I*(x)n
n

xOR

Remark 2.2. We say v is L -stable if it is stable (with respect to L norm) in

the sense of Liapounov. By the comparison theorem (Proposition 3.1), v is L -stable if

and only if it is L -stable both from above and from below.

Definition 5. An equilibrium solution v is said to be strongly stable from above

if there exists a decreasing sequence of time-independent strict supereolutions

4I > *2 > 43 > -o such that m (x) + v(x) as m * uniformly in IF. We say v is

strongly stable from below if there exits an increasing sequence of time-independent

- strict subsolutions #I < 42 < 43 < .... converging to v uniformly in Rn . If an

equilibrium solution is strongly stable both from above and from below, then it is called

strongly stable.

Proposition 2.3. Let (A.1), (A.2), (A.3) hold, and let v be an equilibrium

solution of (1) satisfying

(5) lim v(x) 0(s) Ixl-

-5-
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e Suppose v is strongly stable from above (resp. from below). Then it is L7 stable from

above (resp. from below).

Remark 2.4. If we drop the assumption (A.2), (A.3) or (5), then strong stability

does not necessarily imply L stability (see Appendix). This is in marked contrast to

the case of diffusion problems in bounded domains, where Proposition 2.3 holds true

without such assumptions as (A.2), (A.3) or (5). The proof of Proposition 2.3 will be

NI carried out in the next section.

Remark 2.5. The concept of strong stability is related to that of structural

stability in the following sense: Suppose v is a strongly stable equilibrium solution

of (1). If one perturbs the equation slightly, then the perturbed problem always has a

'< "; stable equilibrium solution in the vicinity of v, provided that the amplitude of

perturbation is small (cf. Remark 4.3 of (5]).

Theorem. Let (A.1), (A.2), (A.3) hold, and let ; be a time-independent strict

supersolution and w be a time-independent strict subsolution such that ; > w. Assume

(6) 5 > lim sup w(x) a lim inf w(x) > -5
.xexl

. where A is as in (A.3). Then there exists an L stable equilibrium solution v of

(1) satisfying w > v > w and

VWx + 0 as lx+-
V- +

Remark 2.6. Since the proof of the above theorem does not make use of the Liapounov

functional, this theorem remains true even if the operator A Is replaced by any second-

order uniformly elliptic linear operator that is not necessarily symmetric.

NO
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3. Proof of Theorem

Proposition 3.1 (comparison theorem). Let do, be bounded continuous functions

on Fi satisfying 4> *'. Then U(t)4 > U(t)* for each t a 0, where U(t) is as in

(3).

This proposition follows from the standard maximum principle and we omit the proof.

Proof of Proposition 2.3. Let C be any positive number and put e = min{S,),

where 6 is as in (A.3). Since v is strongly stable from above, there exists a time-

independent strict supersolution * - 4(x) such that v < 4 < v + £/2. Let t* be a

positive number and set 4 = U(t*)*. By the comparison theorem, the function 4 is again

%. a time-independent strict supersolution; and, as is easily seen,

(7) A4 + f(x,•) < 0 in Rn

in the classical sense and

(8) v < * < v + C/2 in Fn

(see Remark 2.11 the strict inequality in (7) follows from the strong maximum principle

for parabolic equations). In view of (5), (7), (8) and (A.3) as well as the continuity

of f, we see that if c > 0 is a sufficiently small constant then the function

4 (x) - O(x) + c satisfies
c

(9) Ac + f(x, ) < 0 in IP

. (10) v + c < # < v + Z in Rn.
c

The inequality (9) implies that fc is a time-independent supersolution. Take any

w e c(Wn) with v S w S v + c. By (9), (10) and the comparison theorem,

v 4 o(t)w S u(t)* <

for all t 0, and therefore

IU(t)w - v < C

for all t 0 0. The observations above show that v is L stable from above,

completing the proof of Proposition 2.3.

Lem 3.2. Let v1 < v2 be distinct equilibrium solutions of (1) such that there

exists no equilibrium solution v satisfying vi < v < v2. Then there exists either a

-7-
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'' time-independent strict supersolution or a time-independent strict subsolution between

v1 and v2.

- . Proof. Let 9 = g(xju) be a nonnegative smooth function defined on R'P x R such

that its support supp(g) is compact and satisfies

p (11) supp(g) n {(x,v2(xflx e Rn}=

(12) g(x,vl(x)) > 0 for some x e FP

Consider the Cauchy problem

13) - Au + f(x,u) + g(xu), x e 0 , t > 0

Su(x,0) = u0(x), x e i.

By the conditions (11), (12), v 2 is an equilibrium solution of (13), whereas v, i

time-independent strict subsolution. Let u be the solution of (13) with initial d,

" = v1. A standard argument shows that u(x,t) is strictly monotone increasing in

and converges as t + 4- to an equilibrium solution, say vi and u(*,t) is a time-

independent strict subsolution of (13) for each t 1 0 (see Sattinger [8]). The

convergence here is locally uniform on Rn, and clearly we have v, < v I v2. If

' 0 v2 , then ; is not an equilibrium solution of (1) and therefore it is a time-

independent strict supersolution of (1) since g 1 0. On the other hand, if 7 - v2,

then it follows from the compactness of supp(g) that

supp(g) n {(x,u(x,t))Ix e Rne -

for all large t. This implies that for each large t the function u(x,t) is a time-

independent strict subsolution of (1). In either case, we have either strict super- or

subsolution between v, and v2 . This completes the proof of Lemma 3.2.

Lemma 3.3. Let Q be a domain in 3" with smooth boundary afn such that

f*S P\5 is connected. Let u - u(x,t) be a continuous function defined on SP x 3+

such that

(a) u is C2 in x and C1 in t in each domain 11 x R+, Q* x R+; moreover

u is CI in x on each 5 x R+ , x A*;

(b) u satisfies the equation (1) in each of the domains Q x R, * x +;

-8-
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(c) I'll + a 2 0 on n x R
+
, where ul, u2 are the restrictions of u onto

1 2

F, 7 respectively and a/an , a/an are the normal derivatives on IQ toward
1 2

-l (]* respectively.

Then u is a time-dependent supersolution of (1). In other words, we have"I..

u(t)u(*,t') < u(*,t + t')

for any t 0, t' 1 0 (see Definition 2).

Proof. Fix t' a 0 and set w (x) - u(x,t') - C for each E > 0. we first show

(14) U(t)we I u(o,t + t') for t a 0

Write u (-,t) = U(t)w • We shall prove even a stronger version of (14):

- (14)' u (x,t) < u(x,t + t') for x e R, t a o

Clearly (14)' is satisfied at t = 0. Suppose (14)' holds true for t e [O,to), but

fails to hold at t - to. Then we have

"u E (Xto) u(xo,t0 + t')

for some X0 e 10. By the strong maximum principle, x0  can neither be in n nor in

i*, for otherwise we should have

u (x,t) - u(x,t + t')

everywhere in n x [O,to] or everywhere in n* x [O,to], neither of which is possible.

On the other hand, if xo e An, then it follows from Hopf boundary lemma (see, for

instance, Protter and Weinberger [7]) that

au au e
*., (x0 ,t0 + t') > (x0 ,t0 )

(15)
au2  u2

1..- (xo,t 0 + t') > .- (xo'tO )2 2

where u1 , u 2  are the restrictions of u onto ?, respectively. Since u is a

smooth function, we have au Ia/n = -au 2/3n 2  Combining this and (15), we get

-9-

.%. ..... ...........-.. ..............-................................... ......



-O

2
rI (x 0 t 0 + t') +-- (x0 't0 + t') ) 0,

which contradicts the assumption (c). This contradiction proves (11. Letting C + 0,

we get to the conclusion of Lemma 3.3.

Lemma 3.4. Let (A.1), (A.2), (A.3) hold, and let v be an equilibrium solution of

(1) satisfying

.: (16) li- sup Iv(x)l <

1I

where 6 is the constant in (A.3). Then

(17) lim v(x) - 0

Ix!-

More precisely, there exists a constant A > 0 such that

- n-1

Iv(x)I j AIX -  e - l x l for all x e
Lema 3.5. Let v = v(x) be as in Lema 3.4, and take a constant R, R No, such

P that !v(x)l S 6 for all x e Rn - DR , where N, 8 are as in (A.3) and

(18) Dv - (x e 0 1 ix < R1•

Consider the initial-boundary value problem

w .. tw+ (x,w), x e , t > 0,

, w(x,O) - WO WX , x e P DR

t n- 0 x)B R t > 0

If the initial data w0  satisfies jwo(x)I 1 8 for all x e le - BR , then the

solution w(x,t) together with its derivatives aw/3x i (i - 1,...,n) converges to v(x)

uniformly in Rn - BR as t + _. Moreover, the rate of convergence is not slower than

e , where a is the constant in (A.3).

9T. 
9.."
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These lemmas can easily be proved by constructing appropriate comparison functions

and applying the maximum principles the converqencF #f Aw/3x follows from that of w

and the standard a priori estimates. we omit the detail of the proof.

= Lemma 3.6. Let (A.1), (A.2), (A.3) hold, and let v be an equilibrium solution of

(1) satisfying (17). Suppose there exists a sequence of equilibrium solutions

Vi > v2 > v 3 > .. that converges to v uniformly in R. Denote by X the least

--'% eigenvalue of the eigenvalue problem

f y+ f u(x,v(xfl* + A*=0, x e BR4?' (19) u

0 X, xe 3B R~R

where BR  is as in (18). Then A R is monotone decreasing in R and

(20) AR * 0 as R .

%. Proof. The monotonicity of A in R follows from a simple argument based on the

%' maximum principle (or the variational method), so we only prove (20).

Suppose (20) does not hold. Then

%
le N a =_lim A > 0

since we have AR > 0 for each R > 0 by virtue of the existence of the sequence

V i > v 2 > . . .. .  Set

a - min(a,a)

where a is as in (A.3), and consider the (linear) initial value problem

21w t - Aw + fu(X,V(X))w + ow, x e ln, t > 0

w(x,0) - w0 (x), x e 0

An is easily seen, wn = vn - v satisfies

Awn + fu(xv)wn + Own > 0

if n is sufficiently large, hence, for each large n, wn is a time-independent strict

J. subsolution of (21). Arguing as in the proof of Proposition 2.3, we see that for each

large n there exists a small constant n > 0 such that n(x) - wn(x) - £ is a time-, nn n

* . independent strict subsolution of (21). We can choose e sufficiently small so that
n

."..." -11-
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(22) (X) 0 for some x e Rn •
n

Since wn(x) - vn(x) - v(x) + 0 as 1xi - by virtue of Lema 3.4, we have

(23) him, n(X) = -

4-. set

* nxW - max{*, Wx,O1

* is a time-independent subsolution of (21), since the pointwise maximum of a pair of
n

.1 subsolutions is again a subsolution (see, for instance, (51 Proposition 2.5] or the proof

of Lema 3.7 below). By (22) and (23), fn has a compact support and is not identically

equal to zero. Choose a positive number R such that

supp(n) C BR •
nC

Considering that 4 is a time-independent subsolution of (21) and that it vanishes near

R , Ewe easily find that the restriction of # onto IR (again denoted by 4 n) i a

time-independent subsolution of the initial-boundary value problem

wt - Aw + fu(X,V(x))w + ow, x e DR , t > 0

(24) w(x,0) = w0(x), x e BR

I W " 0, x e 3B R, t > 0•

moreover, # is a strict subsolution of (24) since it is not an equilibrium solution of
n

(24) by virtue of the unique continuation theorem for elliptic equations. The existence

of such a function *n implies that w = 0 is an unstable equilibrium solution of (24),

hence the least eigenvalue A of (19) should satisfy

1< aRR

But this is impossible since a ( a = lim X < X. This contradiction shows that the
8-' s R

supposition a > 0 is false, completing the proof of Lenma 3.6.

Lemm a 3.7. Let (A.1), (A.2), (A.3) hold, and let v0 < v, be a pair of equilibrium

'ii solutions of (1) with lim v 0 (x) = lm v1(x) - 0 such that there exists neither a

tim-independent strict supersolution nor'a time-independent strict subsolution between

v0  and v1 . Denote by S the set of all the equilibrium solutions of (1) and put

-12-
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Y ( v e s v0  v vI)

" Then Y is a totally ordered connected subset of S. Moreover, each v e Y - (v Is
0

SL" stable from below and each v e Y (v 1} is L stable from above.

Proof. Take any pair v, ve e Y and set

w(x) - max{v(x),v*(x))

By the comparison theorem we have

U(t)w , U(t)v - v

U(t)w U(t)v* - v*

hence

U(t)w aw for t a0

This means that w is a time-independent aubsolution. Since w cannot be a strict

* mubsolution by the assumption of the lemma, it is an equilibrium solution. Therefore, by

the unique continuation theorem, we have either w - v or w - v*g in other words,

either v a v* or v j v* holds. This show, that Y is a totally ordered set.

Next we show that Y is connected in the topology of C11n) n L (Rn). Using the

boundedness of the derivatives of f(xu) and the fact that v1 , v 2 vanish at lxi -- ,

one easily finds that Y is compact. Suppose Y is not connected. Since Y is totally

.9- %ordered and compact, the disconnectedness of Y implies that there exist v 2 ev3 S Y

with v 2 < v 3 such that there exists no other equilibrium solution between v2  and v 3 .

But this is impossible by Lemma 3.2 and the assumption of the present lemma. This

,, contradiction shows that Y is connected.

-It remains to show the stability. We only prove that each Y - {v11 is L stable

from above, for the other part follows from a similar argument. Since Y is a totally

'9 ordered compact connected set, we can express Y as

Y= (ve 1 0 1 8 < 1),

where v8 < v whenever 0 £ < 0 1.

positive number, and let p, 8 ( 0 ( 1, be such that

% -13-

.I so



v8Cx) < v (x) < V(x) +

for all x e Rn . Since v (x) + 0 as lxi + -, there exists a constant R with R N

such that

1v0(x)l I<

for all x e Rn with Ixl R, where m, 5 are as in (A.3). Now consider the following

initial-boundary value problems

- Ap + f(x,p), x e BR , t > 0,at

(25) p(x,0) P0 (x), x e BR

p -v x e 3B t > 0

Aq + x,q), xe r-n t > 0at

(26) q(x,O) - qO(x), x 6 -

q - V , # x e R' t > 0

In both of the problems (25), (26), v (or more precisely the restriction of v onto

or n - BR ) is an equilibrium solution. And v., v + are a time-independent

strict subsolution of (25) and a supersolution of (26) respectively, where

el - min(I , A)
2 2

Let p(x,t), q(x,t) be solutions of (25), (26) with initial data vet v4 +

respectively. By Lema 3.5 we have

(27) lie fq(x,t) - v x)) - 0 (uniformly in RnP R)

t+49

Also it is not difficult to see that

(28) lim (v (x) - p(x,t)) - 0 (uniformly in 1R)
t+"

Note that the positivity of the term v - p(x,t) in (27) implies that this term is

asymptotically proportional to exp(-X t)#R(x), where A. is the least eigenvalue of

(19) and * is the corresponding positive eigenfunction. And we have

AR + 0 as R + f

-14-
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by Lemma 3,6, on the other hand, by Iama 3.5, the convergence rate in (27) is not slower

than that of exp(-at). Take a sufficiently large R such that A R 
< 
a, and fix it.

Then the convergence rate in (27) is faster than that of (28). Consequently, there exists

a T > 0 such that

(29) 3N 3 10 xj R, t a T

where 3/ N, 3/3n denote the inner and the outer normal derivatives to 3BR

respectively. Now define a function w by

rp(xt + T) (Ixt R, t 0),
w(xt) - q(x,t + T) clxl R, t 0)

By virtue of Lenmm 3.3 end (29), w is a time-dependent supersolution of (1). It is

clear that

(30) v6 (x) w(x,t) < v(x) + C

for all x e If and t a 0. It is also clear that

(31) inf fw(x,0) - v e(x)} > 0
Xere-a."

As C is an arbitrary positive number, (30) and (31) together with the comparison theorem

and the fact that w is a supersolution imply that v is L stable from above. This

completes the proof of Lemma 3.7.

Proof of Theorem. Let (U(t))t>O be the semigroup generated by 1) (see (3)). As

is easily seen, U(t)w is strictly monotone increasing in t and converges as t

to an equilibrium solution of (1), say v (see Sattinger [81). Similarly, U(t)w

converges to an equilibrium solution, say ;. Obviously we have w < v -7 < ; and

that v is strongly stable from below while ; is strongly stable from above. We also

have

(32) lim v(x) - lim (x) - 0

by Lemma 3.4. Denote by S the set of all the equilibrium solutions v of (1)

satisfying v v £ , and set

-15-
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So - {v e S I v is strongly stable from below)

So is not empty since it contains v. Arguing as in the proof of [5; Theorem 2'1, we

easily find that So is an inductively ordered set; in other words, any totally ordered

subset of So has an upper bound in S0 . By Zorn's lemma, So has a maximal element,

say vO . Set

S1 - {v 6 S I v A vO , v is strongly stable from above).

A similar argument shows that S, has a minimal element, say v 1 .

If v0 - v 1 , then v0  is strongly stable both from above and from below; hence it
A

is L stable by Proposition 2.3.

Next consider the case v0 < v1 . In this case there exists neither a time-

independent strict supersolution nor a time-independent strict subsolution between v.

and v1 . In fact, if w - w(x) is a strict subsolution satisfying v0 < w < vi, then

U(t)w is monotone increasing in t and converges as t - 4- to an equilibrium solution

V, V0 < v I v ,, which is strongly stable from below. But this is impossible by the

maximality of v0  in So. Similarly, the existence of a strict supersolution contradicts

the minimality of v1 in S,. This contradiction shows that the above claim is true.

Therefore, by Imma 3.7,

Y - {v s v s v0 s v}

is a compact connected set and each element of Y is L stable. This completes the

proof of Theorem.

-16-S
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Appendix

As mentioned in Remark 2.4, if we drop the assumption (A.2), (A.3) or (5), then

Proposition 2.3 is no longer truel in other words, strong stability does not necessarily

imply L stability. In this case, our main theorem also fails to hold.

To see this, consider the following example:

S-Au + u3, x e R
5
, t > 0,

(33)

u(x,O) = uo(X), x e R
5

u 3 0 is an equilibrium solution of this problem. A simple calculation shows that

wlx) A W x 2 
+ I

is a time-independent strict supersolution of (33) for 0 < X ( fT", while it is a time-

independent strict subsolution for -v < A < 0. Moreover, we have

w(x) + 0 as ) * 0

uniformly in x e a
5
. Therefore, u = 0 is strongly stable. On the other hand, as is

easily seen, u - 0 is not L stable. This shows that the conclusion of Proposition

2.3 (as well as that of the Theorem) is not true if we drop the assumption (A.3).

-17-
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